A Leaky Tank

Prior knowledge - Differentiation of polynomials, finding stationary points and intercepts.

Task:

A 12.5 m³ tank is being filled at a rate of 0.05 m³/s. The moment the tank reaches $120m^3$ of water a bottom leak forms and gets progressively worse with time. The rate of leakage can be approximated as $0.0025t (m^3/s)$, where *t* is the time in seconds from the moment the leak begins.

- 1. Write a differential equation for the rate the volume changes (dV/dt). Give initial conditions for your equation.
- 2. Give an expression for V (solve for V)
- 3. Graph *V* versus *t*, and explain what it means, and find any other critical information.

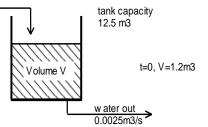
The solutions:

3.

Conditions: Time is taken from the moment the leak <u>begins</u> : i.e.: when t = 0, V = 0

- 1. $\frac{dV}{dt}$ = rate water in rate water out = 0.05 - 0.0025t
- 2. Integrating $V = 0.05t 0.00125t^2 + C$

Substituting in to find *C*: t = 0, V = 0, we get C = 1.2Thus $V = 0.05t - 0.00125t^{2} + 1.2$



 The graph indicates that the water initially rises in the tank, as the leak gets larger the tank begins to drain. The *maximum* volume can be found to be $1.7m^3$, well below the capacity of $12.5m^3$. At 57 seconds the tanks is completely dry (*x*-intercept), and the function gives negative values, but the volume actually remains zero so the actual solution for V is a piece-wise function

w ater in

0.05m3/s

$$\underbrace{t_{0}}_{t_{0}} \underbrace{t_{0}}_{t_{0}} \underbrace{t_{0}}_{t_{0}} = \begin{cases} 1.2 + 0.05t - 0.00125t^{2} & 0 \le t \le 57s \\ 0 & t > 57s \end{cases}$$

Will the City Reservoir dry up?

A more advanced problem similar to the above. Involves integrating e^x

TASK: The water level in a city reservoir has been decreasing steadily during a dry spell, and there is concern it could dry up in the next 60 days if the drought continues. The local water company estimates the consumption rate is approximately 10^7 L/day and the State Conservation Service estimates the rainfall and stream drainage into the reservoir coupled with evaporation from the reservoir should yield a net water input rate of $10^6 exp(-t/100)$ L/day, where t is time in days from the beginning of the drought, at which time the reservoir contained 10^9 L of water.

Solutions: let *V* = volume in reservoir (Litres), *t* = time (days)

 $\frac{dV}{dt} = 10^{6} e^{-\frac{t}{100}} - 10^{7}$, integrate to get $V = -10^{8} e^{-\frac{t}{100}} - 10^{7} t + 10^{9} + 10^{8}$ where $t = 0, V = 10^{9}$, Evaluating V when t = 60 days, we get $V = 4.45 \times 10^{8}$ L

